Prof. Ren-Song Tsay

EECS 204002
Data Structures &R} 418

Prof. REN-SONG TSAY E{_#} 1%
NTHU

CH.é
GRAPHS

October 1, 2018

<"
O
@

The Use of Graphs

» The first record (1736)

= Konigsberg Bridge Problem:
Walk across all the bridges
exactly once

Solved by Euler
Formulate as a graph
» Prove: possible

Iff the degree of each vertex is
even

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay October 1, 2018

612 Graph Definition

» Agraph, G, consists of two sets, V and E.
- G=(V,E)
> V: aset of vertices.
> E: a set of pairs of vertices called edges.
» Undirected graph (simply graph)
> (u,v) and (v,u) represent the same edge.
» Directed graph (digraph)
c<uv>ELI VUS>
° <u,v>=uisheadand v is tail of edge.

o—0

Graph Examples

45 ¢

Undirected Graph Undirected Graph Directed Graph
V(G)={0, 1, 2, 3} V(G)=(0,1,2,3,4,56} V(G)={0, 1, 2}
E(G)={(0.1).(0.2),(03), E(G)={(0,1),(0,2), (1.3), E(G)={<0,1>,

(1,2), (1,3), (2,3)} (1,4), (2,5), (2,6)} <1,0>, <1,2>)}
Restrictions

« Self edges and self loops are not permitted!
- Edges of the form (v, v) and <v, v> are not legal.

« A graph may not have multiple occurrences of the
same edge (multigraph).

Graph with self edge Multigraph

Chapter 1 — Computer Abstractions and Technology 2

Prof. Ren-Song Tsay October 1, 2018

Graph,Vertex and Edge

» For a graph with n vertices, the maximum #
of edges is:

e n(n — 1)/2 for undirected graph
> n(n — 1) for directed graph

« Vertices u and v are adjacent if (u,v) € E
and edge (u, v) is incident on vertices u
and v.

» For a directed edge < u,v >, we say u is
adjacent to v and v is adjacent from u,
and edge (u, v) is incident on vertices u
and v.

Complete Graph ‘
Complete undirected graph ‘ ‘ Complete directed graph ‘
» Graph with n verticeshas « Graph with n vertices
exactly n(n — 1)/2 edges. has exactly n(n — 1)
edges.
Subgraph ‘

12 12
» G’ is a subgraph of G such that
V(G) V(G)and E(G") E(G).

0?

Graph Subgraph Subgraph

Chapter 1 — Computer Abstractions and Technology 3

Prof. Ren-Song Tsay October 1, 2018

Path and Simple Path

» Path:
> A path from u to v represents a sequence of
vertices u, iy, i, ..., i;, v such that
(w,iy), (iy, i), ..., (i, v) are edges in graph.
» Simple path:
> A simple path is a path in which all vertices
except possibly the first and the last are distinct.

S Yes

0,1,3,2 Ye
0,2,0,1 Yes No
0,3,2,1 No No

Cycle

A cycle is a simple path which the first and
the last vertices are the same.

» Notes: if the graph is a directed graph, we

usually add the prefix “directed” to above
terms:

- Directed path
- Directed simple path
- Directed cycle

Connected Graph ‘

» Undirected graph G is said to be
connected iff for every pair of distinct
vertices u and v, there is a path from u to

vinG.)
9?

Not a connected graph

Connected graph

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay October 1, 2018

Connected Component & Tree

« Aconnected component, H, of an
undirected graph is a maximal connected
subgraph.

Hy H,

« Tree: Graph with two connected components

> A connected acyclic graph.

Strongly Connected

« Directed graph G is said to be strongly
connected iff for every pair of distinct
vertices u and v, there is a directed path
from uto v and also from vto uin G.

Not a strongly connected digraph!
There is no directed path from 2 to 0

Strongly Connected Component

» Astrongly connected component is a
maximal subgraph that is strongly

connected.
— ﬁ o
Hl H2

Two strongly connected components

Chapter 1 — Computer Abstractions and Technology 5

Prof. Ren-Song Tsay October 1, 2018

Degree of a Vertex

» Degree of a vertex v:
© The # of edges incident to v.
« In a directed graph:
> In-degree of v
- The # of edges for which v is the tail (incoming edges).
Out-degree of v
- The # of edges for which v is the head (outgoing edges).
- Degree of v =in-degree + out-degree

o

6.1.3 GRAPH
REPRESENTATION

Adjacency Matrix ‘

» Atwo dimensional array with the property that
a[i][j] = 1iff the edge (i,j) or < i,j >isin E(G).

0123
o[0T 11
11011
211101
3LI11ao °

» Waste of memory when a graph is sparse
Storage 0(n?)

S =]
o—-o o
oo — =
=R =N S

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay October 1, 2018

Adjacency Lists

» Undirected graph: Use a chain to represent
each vertex and its adjacent vertices.

adjLists

Adjacency Lists

« Directed graph: Use a chain to represent
each vertex and its adjacent vertices.
> Length of list = out-degree of v

adjLists

1 o

2 | — o0 o0

o NULL

Inverse Adjacency Lists

« Directed graph: Use a chain to represent each
vertex and its adjacent from vertices
Length of list = in-degree of v

adjLists

1 o
0 0

O .o

Chapter 1 — Computer Abstractions and Technology 7

Prof. Ren-Song Tsay October 1, 2018

Sequential Representation

« Example:n =4,e = 4
¢ Int nodes[n + 2e + 1] => nodes[13]

nodes edges
5 7 9 10 13 | 3

Adjacency Multilists ‘

« Multilists: lists in which nodes may be shared
among several lists

To-node

*:zztz' -El“;' "’T

From-node

Weighted Edges

» Edges of a graph sometimes have weights
associated with them.
- Distance from one vertex to another.

> Cost of going from one vertex to an adjacent
vertex.

» We use additional field in each edge to
store the weight.

» A graph with weighted edges is called a

network.
n . '

Chapter 1 — Computer Abstractions and Technology 8

Prof. Ren-Song Tsay October 1, 2018

How Many Kinds of Graphs ?

» 2 types:
Directed,
Undirected

» 2 edge types:
Weighted,
Unweighted

« 4 representations:
Adjacency matrix,
Adjacency lists,
Sequential lists,
Adjacency multilists

ADT: Graph

class Graph
{// object: A nonempty set of vertices and a set of undirected edges
public:
virtual ~Graph() {} // virtual destructor
bool IsEmpty() const{return n == 0}; // return true iff graph has no
vertices
int NumberOfVertices() const{return n}; // return the # of vertices
int NumberOfEdges() const{return e}; // return the # of edges
virtual int Degree (int u) const = 0; // return the degree of a vertex
virtual bool ExistsEdge(int u, int v) const = 0; // check the existence
of edge
virtual void InsertVertex(int v) = 0; // insert a vertex v
virtual void InsertEdge (int u, int v) = 0; // insert an edge (u, v)
virtual void DeleteVertex(int v) = 0; // delete a vertex v
virtual void DeleteEdge (int u, int v) = 0; // delete an edge (u, v)
// More graph operations.
protected:
int n; // number of vertices
int e; // number of edges
}i

Implementation Notes

To accommodate various graph types, we

make the following assumptions:

» Data type of edge weight is double (or
represented as a template parameter).

» We define operations which are
independent of specific graph
representation in the Graph.

» We assume the iterator is used to visit
adjacent vertices.

Chapter 1 — Computer Abstractions and Technology 9

Prof. Ren-Song Tsay

Example: LinkedGraph

void Graph: :foo(void) {
// use iterator to visit adjacent vertices of v
for (each vertex w adjacent to v)..

}

class LinkedGraph: public Graph

{
public:

// constructor
LinkedGraph (const int vertices = 0) : n(vertices), e(0){
adjLists = new Chain<int>[n];
}
// more customized operations.
private:
Chain<int> *adjLists // adjacency lists
Yi

October 1, 2018

Chapter 1 — Computer Abstractions and Technology

10

