
Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 1

CH. 6
GRAPHS

EECS 204002
Data Structures 資料結構
Prof. REN-SONG TSAY 蔡仁松教授
NTHU

1© Ren-Song Tsay, NTHU, Taiwan2018/10/1

2018/10/1 © Ren-Song Tsay, NTHU, Taiwan 2

6.1

The Graph
Abstract Data

Type

The Use of Graphs

 The first record (1736)

◦ Konigsberg Bridge Problem:

Walk across all the bridges

exactly once

◦ Solved by Euler

◦ Formulate as a graph

 Prove: possible

◦ Iff the degree of each vertex is

even

3

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 2

Graph Definition

 A graph, G, consists of two sets, V and E.

◦ G = (V, E)

◦ V: a set of vertices.

◦ E: a set of pairs of vertices called edges.

 Undirected graph (simply graph)

◦ (𝑢, 𝑣) and (𝑣, 𝑢) represent the same edge.

 Directed graph (digraph)

◦ < 𝑢, 𝑣 > ≠ < 𝑣, 𝑢 >

◦ < 𝑢, 𝑣 >⇒ 𝑢 is head and 𝑣 is tail of edge.

4

6.1.2

𝑢 𝑣

Graph Examples

5

0

1

3

2

Undirected Graph

V(G)={0, 1, 2, 3}

E(G)={(0,1), (0,2), (0,3),

(1,2), (1,3), (2,3)}

Undirected Graph

V(G)={0, 1, 2, 3, 4, 5, 6}

E(G)={(0,1), (0,2), (1,3),

(1,4), (2,5), (2,6)}

0

1

3

2

4 5 6

0

1

2

Directed Graph

V(G)={0, 1, 2}

E(G)={<0,1>,

<1,0>, <1,2>)}

Restrictions

 Self edges and self loops are not permitted!

◦ Edges of the form (𝑣, 𝑣) and <𝑣, 𝑣> are not legal.

 A graph may not have multiple occurrences of the

same edge (multigraph).

6

0

1

2

3

Graph with self edge

0

1

2

3

Multigraph

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 3

Graph, Vertex and Edge

 For a graph with 𝑛 vertices, the maximum #
of edges is:

◦ 𝑛(𝑛 − 1)/2 for undirected graph

◦ 𝑛(𝑛 − 1) for directed graph

 Vertices 𝑢 and 𝑣 are adjacent if 𝑢, 𝑣 ∈ 𝐸
and edge (𝑢, 𝑣) is incident on vertices 𝑢
and 𝑣.

 For a directed edge < 𝑢, 𝑣 >, we say 𝑢 is
adjacent to 𝑣 and 𝑣 is adjacent from 𝑢,
and edge (𝑢, 𝑣) is incident on vertices 𝑢
and 𝑣.

7

Complete Graph

Complete undirected graph

• Graph with 𝑛 vertices has

exactly 𝑛(𝑛 − 1)/2 edges.

Complete directed graph

 Graph with 𝑛 vertices

has exactly 𝑛(𝑛 − 1)
edges.

0

1

3

2

0

1 2

8

Subgraph

 𝐺’ is a subgraph of 𝐺 such that

𝑉(𝐺’) 𝑉(𝐺) and 𝐸(𝐺’) 𝐸(𝐺).

9

0

1

3

2

Graph

0

1

3

2

Subgraph

1

3

2

Subgraph

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 4

Path and Simple Path

 Path:
◦ A path from 𝒖 to 𝒗 represents a sequence of

vertices 𝒖, 𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌, 𝒗 such that
(𝒖, 𝒊𝟏), (𝒊𝟏, 𝒊𝟐),… , (𝒊𝒌, 𝒗) are edges in graph.

 Simple path:
◦ A simple path is a path in which all vertices

except possibly the first and the last are distinct.

10

0

1

3

2

Sequence Path? Simple path?

0,1,3,2 Yes Yes

0,2,0,1 Yes No

0,3,2,1 No No

Cycle

A cycle is a simple path which the first and

the last vertices are the same.

 Notes: if the graph is a directed graph, we

usually add the prefix “directed” to above

terms:

◦ Directed path

◦ Directed simple path

◦ Directed cycle

11

Connected Graph

 Undirected graph G is said to be

connected iff for every pair of distinct

vertices 𝒖 and 𝒗, there is a path from 𝒖 to

𝒗 in G.

12

0

1

3

2

Connected graph

0

1

3

2

0

1

3

2

4

5

6

7

4

5

6

7

Not a connected graph

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 5

Connected Component & Tree

 A connected component, H, of an
undirected graph is a maximal connected
subgraph.

 Tree:

◦ A connected acyclic graph.

13

0

1

3

2

4

5

6

7

Graph with two connected components

H1 H2

Strongly Connected

 Directed graph G is said to be strongly

connected iff for every pair of distinct

vertices 𝒖 and 𝒗, there is a directed path

from 𝒖 to 𝒗 and also from 𝒗 to 𝒖 in G.

14

0

1

2

Not a strongly connected digraph!

There is no directed path from 2 to 0

Strongly Connected Component

 A strongly connected component is a

maximal subgraph that is strongly

connected.

15

0

1

2

0

1

2

Two strongly connected components

H1 H2

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 6

Degree of a Vertex

 Degree of a vertex 𝑣:

◦ The # of edges incident to 𝑣.

 In a directed graph:

◦ In-degree of 𝑣
 The # of edges for which 𝑣 is the tail (incoming edges).

◦ Out-degree of 𝑣
 The # of edges for which 𝑣 is the head (outgoing edges).

◦ Degree of 𝒗 = in-degree + out-degree

16

1

2

3

6.1.3 GRAPH
REPRESENTATION

17

Adjacency Matrix

 A two dimensional array with the property that

𝑎[𝑖][𝑗] = 1 iff the edge (𝑖, 𝑗) or < 𝑖, 𝑗 > is in 𝐸(𝐺).

 Waste of memory when a graph is sparse

◦ Storage 𝑂(𝑛2)

18

0

1

3

2

0

1

2

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 7

2 010

Adjacency Lists

 Undirected graph: Use a chain to represent

each vertex and its adjacent vertices.

19

0

1

3

2

2 013

0 032

0 031

[0]

[1]

[2]

[3]

adjLists

Adjacency Lists

 Directed graph: Use a chain to represent

each vertex and its adjacent vertices.

◦ Length of list = out-degree of 𝑣

20

[0]

[1]

[2]

0

1

2

1 0

0 02

NULL

adjLists

Inverse Adjacency Lists

 Directed graph: Use a chain to represent each

vertex and its adjacent from vertices

◦ Length of list = in-degree of 𝑣

21

[0]

[1]

[2]

1 0

0 0

adjLists

1 0

0

1

2

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 8

Sequential Representation

 Example: 𝑛 = 4, 𝑒 = 4

 Int nodes[𝑛 + 2𝑒 + 1] => nodes[13]

2018/10/1 © Ren-Song Tsay, NTHU, Taiwan 22

0

1

3

2

0 1 2 3 4 5 6 7 8 9 10 11 12

5 7 9 10 13 1 3 0 3 3 0 1 2

nodes edges

Adjacency Multilists

2018/10/1 © Ren-Song Tsay, NTHU, Taiwan 23

0

1

2

0

1 2 0 01 0 0

0 1 0 0

2 0

1

0

1 2
Header

nodes

 Multilists: lists in which nodes may be shared

among several lists Veretex 1 Vertext 2 Link1 Link2

From-node

To-node

Weighted Edges

 Edges of a graph sometimes have weights

associated with them.

◦ Distance from one vertex to another.

◦ Cost of going from one vertex to an adjacent

vertex.

 We use additional field in each edge to

store the weight.

 A graph with weighted edges is called a

network.

24

0 1
w

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 9

How Many Kinds of Graphs ?

 2 types:

◦ Directed,

◦ Undirected

 2 edge types:

◦ Weighted,

◦ Unweighted

 4 representations:

◦ Adjacency matrix,

◦ Adjacency lists,

◦ Sequential lists,

◦ Adjacency multilists

25

ADT: Graph

class Graph

{// object: A nonempty set of vertices and a set of undirected edges.

public:

virtual ~Graph() {} // virtual destructor

bool IsEmpty() const{return n == 0}; // return true iff graph has no

vertices

int NumberOfVertices() const{return n}; // return the # of vertices

int NumberOfEdges() const{return e}; // return the # of edges

virtual int Degree(int u) const = 0; // return the degree of a vertex

virtual bool ExistsEdge(int u, int v) const = 0; // check the existence

of edge

virtual void InsertVertex(int v) = 0; // insert a vertex v

virtual void InsertEdge(int u, int v) = 0; // insert an edge (u, v)

virtual void DeleteVertex(int v) = 0; // delete a vertex v

virtual void DeleteEdge(int u, int v) = 0; // delete an edge (u, v)

// More graph operations…

protected:

int n; // number of vertices

int e; // number of edges

};

26

Implementation Notes

To accommodate various graph types, we

make the following assumptions:

 Data type of edge weight is double (or

represented as a template parameter).

 We define operations which are

independent of specific graph

representation in the Graph.

 We assume the iterator is used to visit

adjacent vertices.

27

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 10

Example: LinkedGraph

28

class LinkedGraph: public Graph

{

public:

// constructor

LinkedGraph(const int vertices = 0) : n(vertices), e(0){

adjLists = new Chain<int>[n];

}

// more customized operations…

private:

Chain<int> *adjLists // adjacency lists

};

void Graph::foo(void){

// use iterator to visit adjacent vertices of v

for (each vertex w adjacent to v)…

}

